Kaushagen, Taylor

Subject: Attachments: FW: Commission Meeting Request Geologic Study – Drilling for Data in North Dakota press quality (1).pdf; Committment to Safety_ SCS 2022 (1).pdf; Summit Map Overview.pdf; SCS_CASS_ND_20220211.pdf

Sent: Monday, March 28, 2022 4:33 PM To: Kaushagen, Taylor <KaushagenT@casscountynd.gov> Subject: FW: Commission Meeting Request

CAUTION: EXTERNAL EMAIL

From: Joey Borracci Sent: Monday, March 28, 2022 4:29 PM To: <u>kaushagen@casscountynd.gov</u> Subject: Commission Meeting Request

This is Joey Borracci from Summit Carbon Solutions and I am requesting to be put on the agenda for the Commissioners meeting on April 18th. We are the company that is going to install the Co2 pipeline through Cass County. The Summit attendees will be Joey Borracci and Jay Volk that does all of the non-environmental permitting. This meeting is intended to be a meet and greet and go over the project perimeters. I am also requesting that the following departments, if possible, to attend as they will be crucial in the process of getting permits for the pipeline: Highway Superintendent, Planning/Zoning, County Engineers. Attached are some of the materials I was going to pass out to the principal attendees.

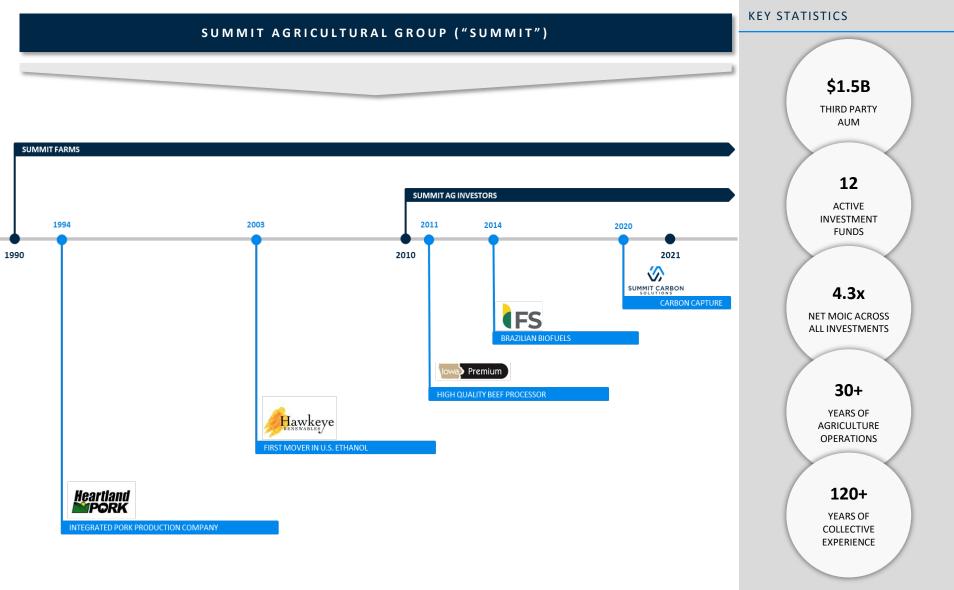
Joey Borracci Authorized Summit Carbon Solutions Agent 318-272-3221

Summit Carbon Solutions

SOLUTIONS

Meeting Objectives & Agenda

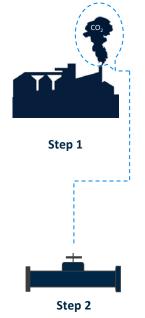
Objectives

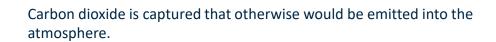

- Provide Summit Carbon's Project Overview
- Make appropriate introductions between Cass County and Summit with regards to understanding County permitting requirements and processes

Agenda

- Who is Summit Carbon Solutions
- Project Overview
- Timeframe

SUMMIT CARBON


Summit Agricultural Group Today

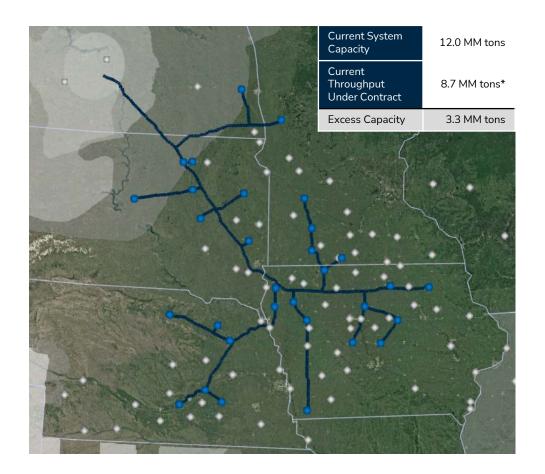


Midwest Carbon Express Overview

At our 31 partner ethanol plants, Summit Carbon Solutions will install new, state-of-the-art infrastructure

The captured greenhouse gases are compressed and moved through a newly constructed pipeline system.

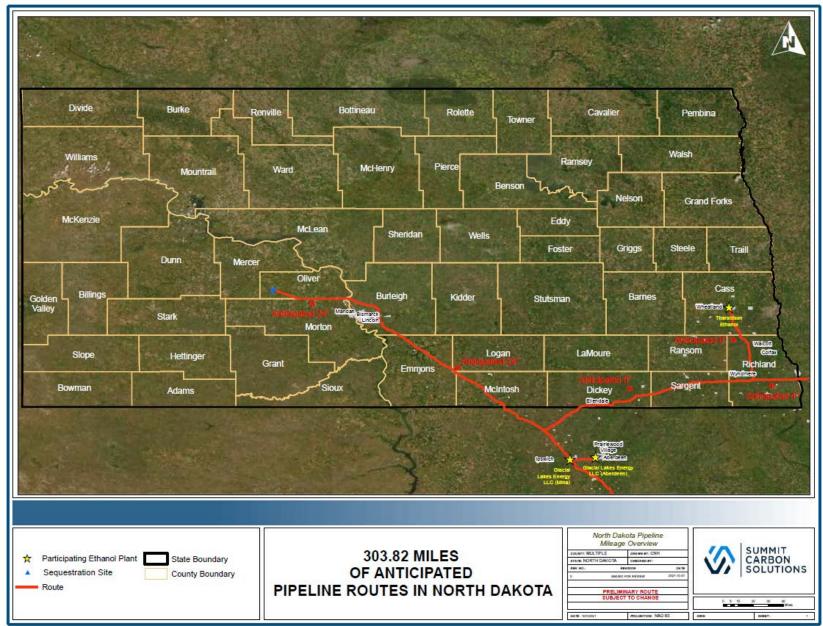
CO₂ arrives at the injection site in North Dakota where it will be permanently and safely stored in deep underground geologic formations.


SCS is engineering A CO₂ pipeline system to accommodate growth in volumes from additional partner facilities

<u>**Oversized infrastructure**</u> to accommodate more than ~3M additional tons of CO₂ annually

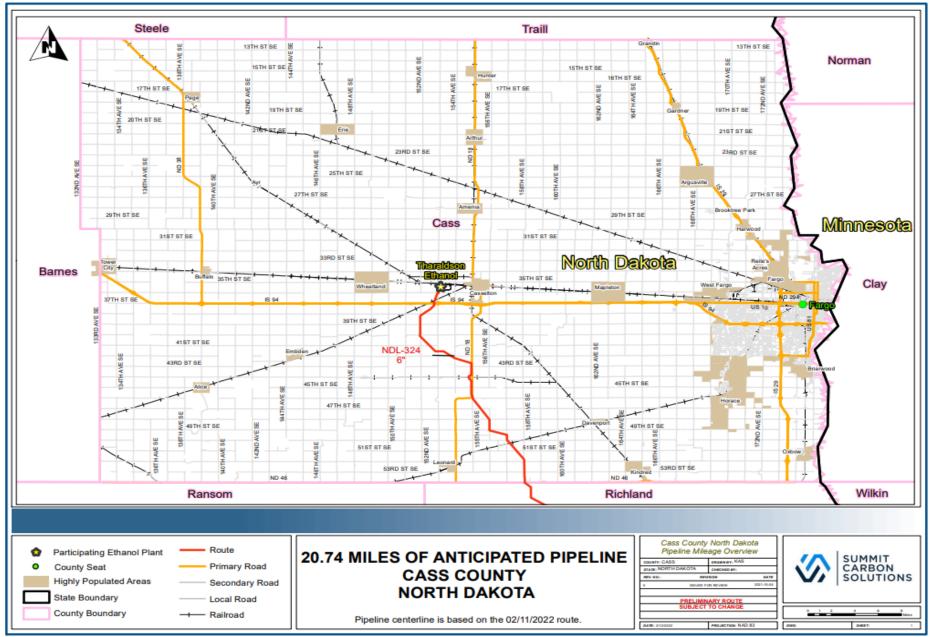
Partnering with already best-in-class biofuel facilities with direct access to the lowest cost inputs

Carbon capture and storage further <u>increases facility</u> <u>profitability and credit worthiness</u>, supporting <u>long-</u> <u>term viability</u> of SCS' partner facilities

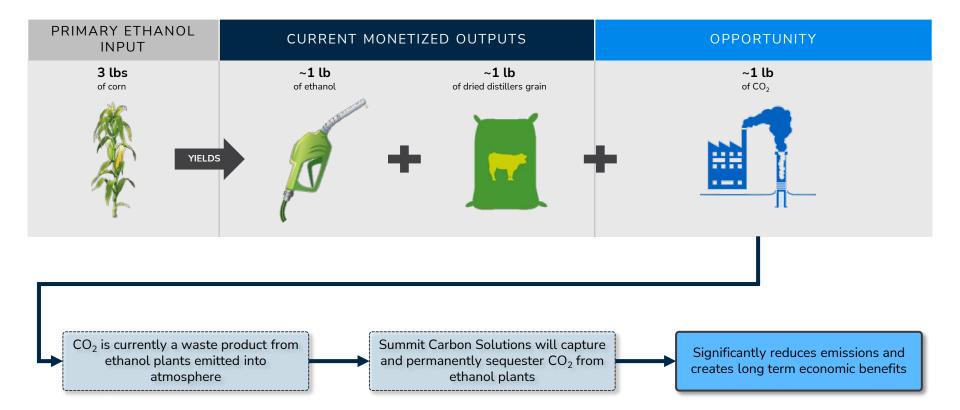

Potential CO₂ Sequestration Zones

Other Low-Cost CO₂ Facility

Pipeline Route

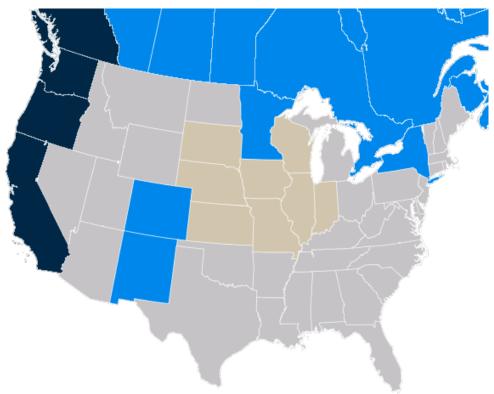

North Dakota - Overview

Cass, ND



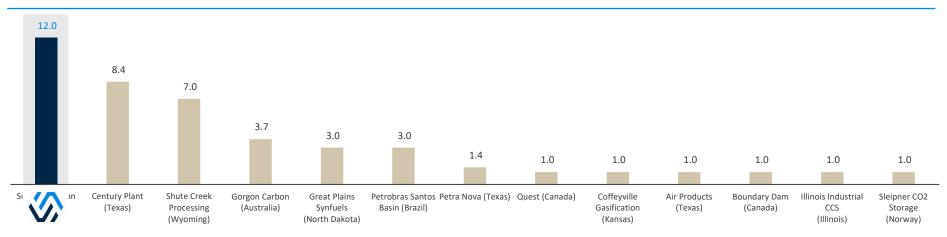
SUMMIT CARBON

Opportunity to Scale a Transformational Carbon Capture Platform


SCS will help seize economic and environmental opportunities

SCS WILL LEAD THE DECARBONIZATION OF THE BIOFUELS INDUSTRY IN THE MIDWEST

Growing Low-Carbon Markets Provides Attractive Market


NORTH AMERICAN LOW-CARBON FUEL MARKETS

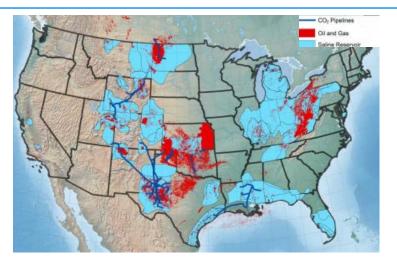
BILLION GALLONS OF LOW-CARBON ETHANOL DEMAND

Existing	Likely	Proposed	Total
2.1	2.2	1.8	6.1

Midwest Carbon Express: Environmental Benefits

CREATING THE WORLD'S LARGEST CARBON CAPTURE AND STORAGE PROJECT

CAPACITY TO CAPTURE, TRANSPORT AND STORE **<u>12 MILLION METRIC TONS OF CO2</u>** EACH YEAR EQUIVALENT TO:



SUMMIT CARBON

Summit Carbon Solutions: A Commitment to Safety

CCS technology has been safely and successfully implemented since the 1970s

CURRENT U.S. CO2 PIPELINE FOOTPRINT

IMPECCABLE SAFETY RECORD

CO₂ pipeline fatalities in the last 20 years¹

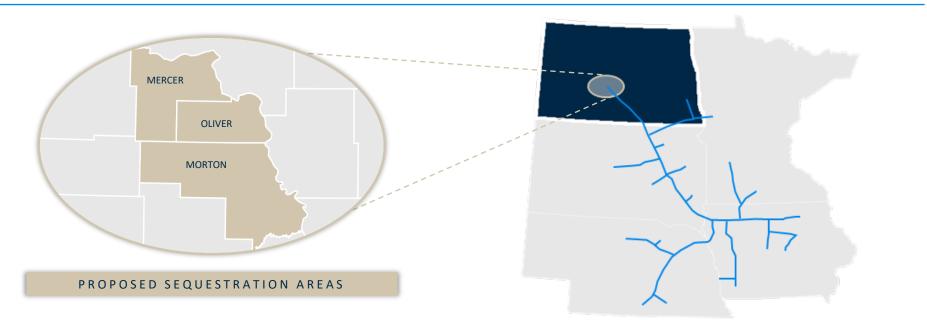
 CO_2 is much less of a health and environmental hazard than other pipelines. CO_2 is not combustible (it is used as a fire retardant).

Capture technology has been deployed at 40+ ethanol facilities throughout the U.S.

Pipeline transportation is the safest method.

More than 5,000 miles of CO_2 pipelines exist in the U.S.

SCS will only utilize highly rated and safe materials, including carbon steel.



We will utilize proven technologies and employ the best industry practices to ensure the project is safe for landowners and the communities where they live, work, and raise families.

CO₂ Storage

TARGET STORAGE REGIONS

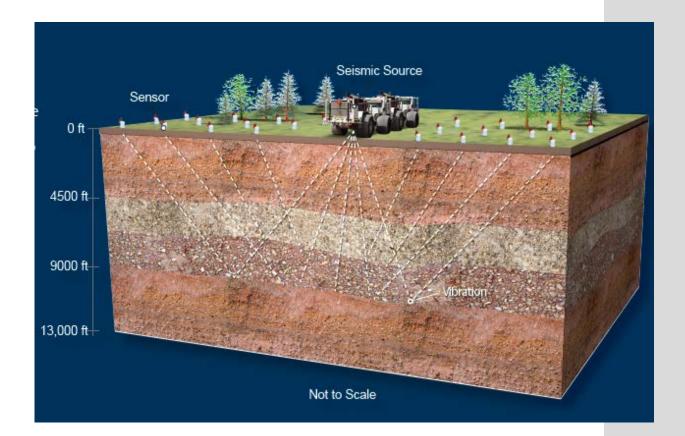
SELECTION, CONSTRUCTION AND OPERATIONS

SITE SELECTION	PERMITTING	SITE PREP	WELL DRILLING	INJECTION	POST-INJECTION MANAGEMENT
 North Dakota has ideal geology for storage of CO₂ Selection considerations include geology, safety, storage capacity, environmental impact and many others 	 An additional advantage of storing CO₂ in North Dakota is that the state has primacy over Class VI wells The Department of Mineral Resources oversees Class VI permitting 	 Site grading Surface infrastructure (roads, pipelines, fences, security) Well pad construction and preparation Water supply 	 Injection wells are drilled approximately 1 mile below ground In addition to injection wells, several monitoring wells ensure CO₂ is safely stored 	 CO₂ arrives via pipeline and is injected in the wells Continuous monitoring, maintenance and testing ensures compliance with permits and regulations 	 After injection is complete, the well is plugged and select equipment is removed Monitoring and testing continue to ensure permanent storage

Stratigraphic Test Wells:

Drill & Core – 3 wells – Triangle Determine Thickness of Cap Rock Determine Porosity & Permeability of the injection zone

Determine Thickness of the Base Rock



GEOPHYSICAL SURVEY:

Ground Vibration allows us to see underground formations

Summit Carbon Solutions Economic Benefits

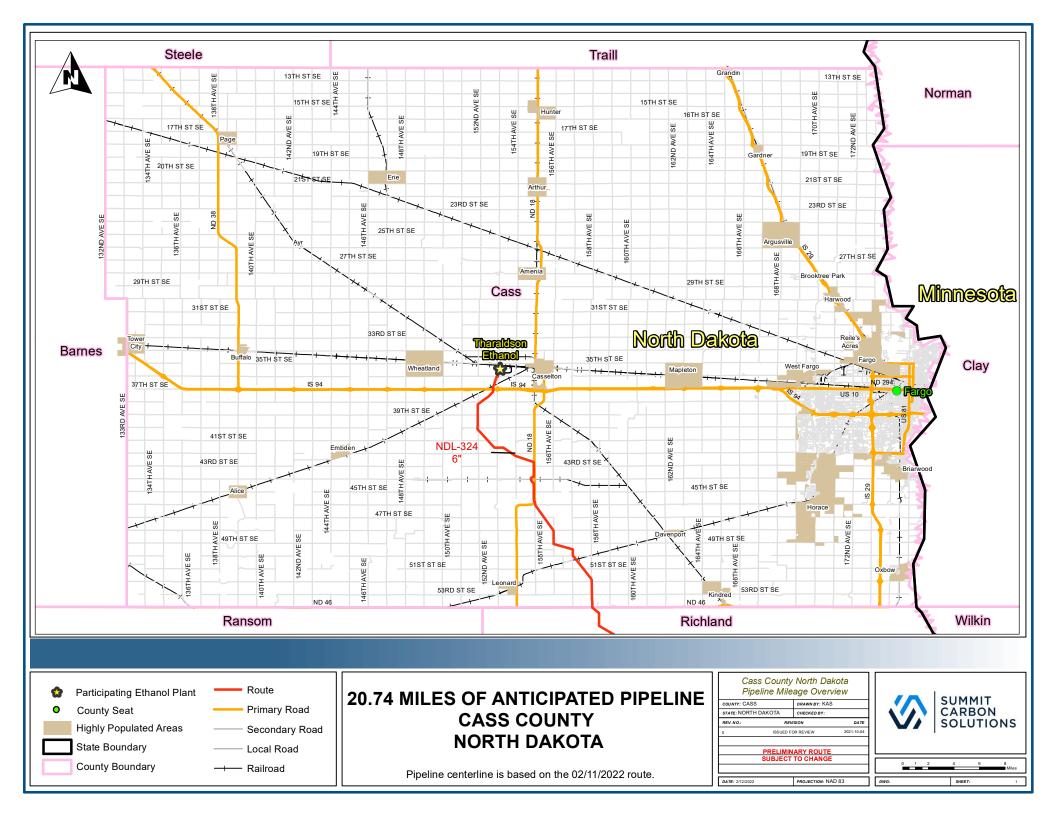
SCS will drive economic growth and job creation across the Midwest and beyond

\$4.5 Billion

capital investment with operations beginning in 2024

	Capture & Compression	Pipeline	TOTAL		
PROJECT JOBS	132 - 198	14,067 – 17,193	14,199 — 17,391		
OPERATION JOBS	220 - 307	128 - 156	348 - 463		
TOTAL JOBS	352 – 505	14,195 – 17,349	14,547 – 17,854		

SUMMIT CARBON SOLUTIONS IS COMMITTED TO UTILIZING LOCAL UNION AND NON-UNION CONTRACTORS, LOCAL SUPPLIERS, AND LOCAL BUSINESSES TO PROVIDE ONGOING ECONOMIC BENEFITS TO LOCAL COMMUNITIES ACROSS IOWA AND THE MIDWEST.



Projected Project Timeline

Thank You

MIDWEST CARBON EXPRESS: A TRANSFORMATIVE DECARBONIZATION PLATFORM

Geologic Study – Drilling for Data in North Dakota

Rock samples (called core) and geologic data will be collected from three exploratory holes to be drilled in central North Dakota starting in late 2021. The data gathering is an essential part of investigating the feasibility of developing safe, permanent geologic storage for carbon dioxide, or CO₂, as part of the Summit Carbon Solutions Midwest Carbon Express project. No CO₂ is injected during these tests.

What Is the Benefit of Drilling a Test Hole?

A critical step in determining whether the potential storage zones are suitable for permanent CO_2 storage is drilling three test holes more than 2 miles deep to collect data, fluids, and rock samples. Information collected from this activity will be added to results from other geologic investigations and existing information to help scientists verify that the deep rock layers underlying the study area will safely and permanently store CO_2 . Permits from state and county officials are needed to perform the test.

What Precautions Are Taken?

Land and groundwater resources are protected by impermeable barriers installed prior to and during drilling (illustrated at right).

How Will the Collected Data Be Used?

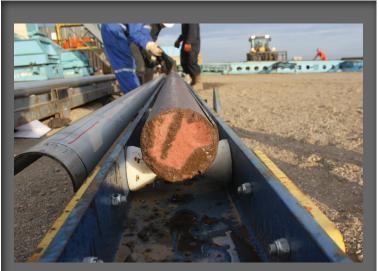
In the several months following the drilling activity, the rock core, fluids, and data will be analyzed and the results incorporated into a computer model of the subsurface. Using the model, geologists will determine how CO_2 moves in the rock layers and whether the system meets the criteria for safe, permanent geologic storage of CO_2 . In addition, this information is necessary to prepare the required state permits for CO_2 injection and storage.

What Is Carbon Capture and Storage or CCS?

CCS captures CO_2 from industrial processes before it is emitted by the plant, transports the CO_2 to an injection site, and injects the CO_2 deep underground for safe, permanent storage in a suitable rock layer. CCS can help reduce the carbon footprint of large stationary facilities such as ethanol plants, coal-fired power plants, cement plants, oil and gas refineries, and agricultural processing plants.

As required under the permit to drill, groundwater resources are protected during drilling by using a special freshwater drilling mud, then isolated with layers of steel casing and concrete. The surface casing and cement remain as permanent protection for groundwater; see "Drill the Hole" on the back page for more details.

A drilling rig equipped to drill a test hole more than 2 miles deep to collect rock core and fluids as well as data about the rock layers, their fluids, and their pressures.


What Are the Basic Steps for This Activity?

Drilling, sampling, and data collection follow the same practices and procedures used to characterize the geology of hydrocarbons, coal, and groundwater (also called the freshwater zone) resources in North Dakota.

Obtain Permits – Drilling the holes for geologic research requires permits from the North Dakota Industrial Commission Department of Mineral Resources and a temporary use permit from the county. The permits ensure that proper steps are taken to protect groundwater, the environment, and human safety.

Prepare Drill Site – Pad preparation entails leveling and laying aggregate on an area of land approximately 400 × 400 ft to make a flat, stable work area for drilling equipment. Each pad takes 10–14 days to complete.

Drill the Hole – Drilling is completed in four stages. Stage 1 involves digging a hole 90 feet deep, which is lined with steel pipe (conductor casing) and sealed with concrete to the surface. Stage 2 involves drilling a hole to at least 50 feet below the bottom of the freshwater zone (~1950 ft deep). Using special drilling mud prevents groundwater contamination. The hole is lined with steel pipe (surface casing), the outside of which is cemented from the bottom to the surface to protect freshwater sources during subsurface activities. Stage 3 continues drilling to a depth just above the seal overlying the potential storage zone (several thousand feet deep).

Stage 4, the coring

collecting multiple

are cut using a special

hollow drill bit. Stages

3 and 4 are repeated

for each target zone,

yielding hundreds of

feet of core per zone.

Gather Downhole

instruments runs

Data – After the core

samples are removed,

sensors into the hole,

a truck with specialized

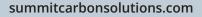
cylinders of rock called cores, which

stage, involves

Rock core cut from about 1 mile below the surface.

Multiple cylindrical rock samples called cores will be retrieved from a section of the hole using a specialized coring drill bit.

a technique called wireline logging. This standard drilling industry practice collects data about the rock layers, their fluids, and their pressures.

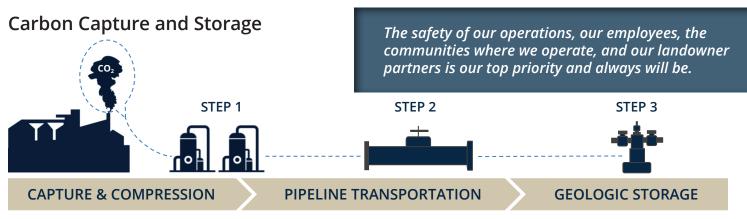

Close the Hole – The test holes are planned to be monitoring wells. After data collection is completed, the test holes will be lined with steel pipe (called casing) and concrete, then sealed temporarily to maintain integrity while data and rock core analysis are performed.

Summit Carbon Solutions seeks to lower greenhouse gas emissions by connecting industrial facilities via strategic infrastructure to safely and permanently store CO₂.

To learn more, contact:

Jeff Skarre, Sequestration Director, Land, Legal & Regulatory Affairs jskaare@summitcarbon.com, 701.590.3995

Jason Erickson, Sequestration Director Project Development Jerickson@summitcarbon.com, 701.290.5158


© 2021 Summit Carbon Solutions

COMMITMENT TO SAFETY

A TRANSFORMATIVE DECARBONIZATION PLATFORM

Proven Technologies Make Carbon Capture and Storage Safe

The Summit Carbon Solutions (Summit) carbon capture and storage (CCS) project will reduce the carbon footprint of biofuel plants across the five-state Midwest region to create long-term economic benefits and support longterm viability of Summit's partner facilities. The project will use proven, safe technology and equipment.

At Summit's partner facilities, carbon dioxide capture and compression equipment will be installed to capture CO₂ emissions.

SUMMIT CARBON OLUTIONS

> CO₂ capture technology has been safely and successfully implemented since the 1970s and is deployed at over 40 ethanol facilities throughout the United States for manufacturing, refrigeration, and food-grade CO₂.

Small underground pipelines will connect each facility to a large trunk pipeline, which will transport CO₂ to the sequestration site in North Dakota.

Pipeline is the safest method for CO₂ transport. Established federal and state regulations govern pipeline materials, siting, construction, and operation. Summit follows all requirements for CO₂ pipeline construction and is committed to safety.

Captured CO₂ will be safely and permanently stored in rock layers about a mile deep in North Dakota, with permission of and oversight by the North Dakota Department of Mineral Resources.

Safe, permanent CO₂ storage in geologic layers has been proven during more than 40 years of field operations associated with oil production in Texas, 20 years in Saskatchewan, and 10 years in Montana.

Summit is committed to using proven technologies and employing the best industry practices to ensure the project is safe for landowners and the communities where they live, work, and raise families.

~1.4 MILLION

Summit's infrastructure will be capable of storing 12 million tons of CO₂ a year, equivalent to:

Cars Removed from the Road per Year Source: Global CCS Institute. EPA

CO₂ is:

- A gas in atmospheric conditions.
- A fluid deep underground or in a pipeline.
- Nonexplosive, nonflammable, and cannot burn.
- A major greenhouse gas that helps create and maintain the natural greenhouse effect that keeps our planet hospitable to life.
- Essential to plant life.
- A byproduct of animal metabolism.
- A byproduct of burning carbon-based fuels (wood, ethanol, biodiesel, and fossil fuels), making cement, and plowing.
- Low-risk to fish and aquatic life.

Pipeline Transport Is Critical to CCS

Transporting carbon dioxide by pipeline is the safest method for the large volumes of CO₂ that will be captured and permanently stored. With more than 5000 miles currently operating in the United States, carbon dioxide pipelines have an impeccable safety record of no fatalities and only one injury in the last 20 years.

Pipelines Are Highly Regulated

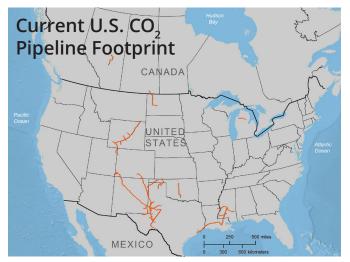
The U.S. Department of Transportation (DOT) Pipeline and Hazardous Materials Safety Administration (PHMSA) has established stringent requirements for the safe design, construction, and operation of CO_2 pipelines. In addition, constructing a carbon dioxide transportation pipeline requires permits from the following entities:

Federal: U.S. Army Corps of Engineers

State:

- Iowa Utility Board
- South Dakota Public Utility Commission
- North Dakota Public Service Commission
- Minnesota (county jurisdiction)
- Nebraska (county jurisdiction)

Summit must complete access agreements with all landowners on their proposed route as part of the permit applications. The entire process is anticipated to be completed by the end of 2022.


Summit's Pipeline Route Is Carefully Selected

Selecting a safe route for a carbon dioxide pipeline requires many data sources. An interactive software platform that includes all publicly available information is used to determine the path. This platform includes data regarding:

- High-population-density areas
- Environmentally sensitive areas, such as wetlands and protected waterways
- · Culturally sensitive areas
- Historical preservation areas
- Federally restricted areas, such as grasslands and migratory bird-nesting areas

Summit's Pipeline Is Overbuilt for Safety

Summit's pipeline will be built beyond federal specifications and deeper than required. Every weld is inspected by x-ray technology, and the pipeline will have the latest in leak detection-monitoring technology.

More than 5000 miles of CO_2 pipelines are in operation in the United States.

The pipeline system will be approximately 2000 miles, constructed with high-strength carbon steel, and buried at least 4 feet deep. All pipeline segments will have a wall thickness ranging from 0.189 to 0.750 inches thick, and the diameter will range from 4 to 24 inches.

Summit Carbon Solutions seeks to lower greenhouse gas emissions by connecting industrial facilities via strategic infrastructure to safely and permanently store CO₂.

To learn more, contact:

Rod Dillon, Director of Regulatory Compliance rdillon@summitcarbon.com

info@summitcarbon.com

summitcarbonsolutions.com

South Dakota

Nebraska

1 Homeland 2 Golden Grain 3 Tharaldson 4 Otter Tail 5 Watertown 6 Mina 7 Aberdeen 8 Superior 9 Corn, LP 10 Pine Lake 11 LDC Grand Junction 12 Lincolnway Energy 13 Ringneck Energy 14 Redfield Energy 15 Little Sioux 16 Siouxland Energy 17 Plymouth Energy 18 Quad County 19 Shenandoah 20 Huron 21 Dakota Ethanol 22 Husker Ag 23 Atkinson 24 LDC Norfolk 25 Central City 26 York 27 Wood River 28 Granite Falls 29 Highwater

NDM-106

30 Heron Lake 31 Fairmont

Midwest Carbon Express 01/18/2022 Project Overview DRAWN BNJEGRI-TEK COUNTY: MULTIPLE STATE: IA, MN, NE, SD, ND CHECKED BY:

REVISION

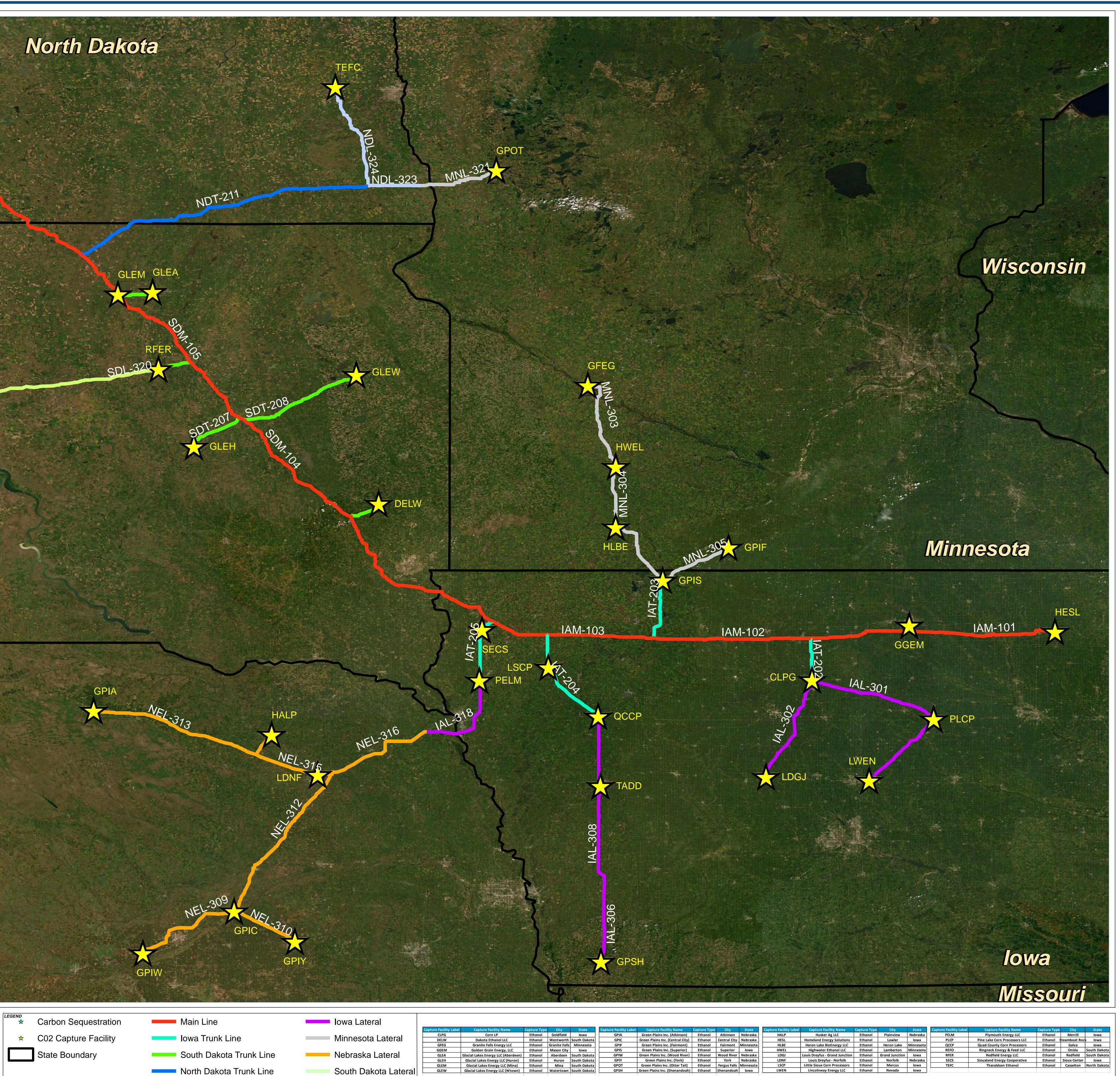
01/11/2022 ACTIVE ROUTE

DATE

2022-01-11

REV. NO.:

0 12.5 25


SUMMIT CARBON SOLUTIONS

BACKGROUND: AERIAL OVERVIEW ONFIDENTIAL & PRELIMINA

DATE: 1/18/2022

DWG: SCS-OV-020

PROJECTION: GCS NAD83

State Boundary

South Dakota Trunk Line

North Dakota Trunk Line

Nebraska Lateral South Dakota Lateral

	Capture Facility Label	Capture Facility Name	Capture Type	City	State	Capture Facility Label	Capture Facility Name	Capture Type	City	State	Capture Facility Label	į.
	CLPG	Corn LP	Ethanol	Goldfield	Iowa	GPIA	Green Plains Inc. (Atkinson)	Ethanol	Atkinson	Nebraska	HALP	
	DELW	Dakota Ethanol LLC	Ethanol	Wentworth	South Dakota	GPIC	Green Plains Inc. (Central City)	Ethanol	Central City	Nebraska	HESL	H
	GFEG	Granite Falls Energy LLC	Ethanol	Granite Falls	Minnesota	GPIF	Green Plains Inc. (Fairmont)	Ethanol	Fairmont	Minnesota	HLBE	
	GGEM	Golden Grain Energy, LLC	Ethanol	Mason City	lowa	GPIS	Green Plains Inc. (Superior)	Ethanol	Superior	lowa	HWEL	
	GLEA	Glacial Lakes Energy LLC (Aberdeen)	Ethanol	Aberdeen	South Dakota	GPIW	Green Plains Inc. (Wood River)	Ethanol	Wood River	Nebraska	LDGJ	Lo
	GLEH	Glacial Lakes Energy LLC (Huron)	Ethanol	Huron	South Dakota	GPIY	Green Plains Inc. (York)	Ethanol	York	Nebraska	LDNF	
	GLEM	Glacial Lakes Energy LLC (Mina)	Ethanol	Mina	South Dakota	GPOT	Green Plains Inc. (Otter Tail)	Ethanol	Fergus Falls	Minnesota	LSCP	L
all	GLEW	Glacial Lakes Energy LLC (Wtown)	Ethanol	Watertown	South Dakota	GPSH	Green Plains Inc. (Shenandoah)	Ethanol	Shenandoah	lowa	LWEN	
~												

Redfield Energy LLC

RFER

SECS

Ethanol Redfield South Dakota

Siouxland Energy CooperativeEthanolSioux CenterIowaTharaldson EthanolEthanolCasseltonNorth Dakota